Total restrained domination in graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

Results on Total Restrained Domination in Graphs

Let G = (V,E) be a graph. A set S ⊆ V (G) is a total restrained dominating set if every vertex of G is adjacent to a vertex in S and every vertex of V (G)\S is adjacent to a vertex in V (G)\S. The total restrained domination number of G, denoted by γtr(G), is the smallest cardinality of a total restrained dominating set of G. In this paper we continue the study of total restrained domination in...

متن کامل

Total restrained domination in unicyclic graphs

Let G = (V,E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex in V is adjacent to a vertex in S and every vertex of V −S is adjacent to a vertex in V −S. The total restrained domination number of G, denoted by γtr(G), is the minimum cardinality of a total restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We sho...

متن کامل

$k$-tuple total restrained domination/domatic in graphs

‎for any integer $kgeq 1$‎, ‎a set $s$ of vertices in a graph $g=(v,e)$ is a $k$-‎tuple total dominating set of $g$ if any vertex‎ ‎of $g$ is adjacent to at least $k$ vertices in $s$‎, ‎and any vertex‎ ‎of $v-s$ is adjacent to at least $k$ vertices in $v-s$‎. ‎the minimum number of vertices of such a set‎ ‎in $g$ we call the $k$-tuple total restrained domination number of $g$‎. ‎the maximum num...

متن کامل

Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs

Let G = (V,E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of V − S is adjacent to a vertex in V − S. A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. The total restrained domination number of G (restrained domination number of G, respectively),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2011

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2011.07.059